Dienone Tautomers of 4-Alkoxy-2,6-di-tert-butylphenols

Kanji Omura

College of Nutrition, Koshien University, Momijigaoka, Takarazuka, Hyogo 665, Japan

Received May 29, 1996[®]

Generation and isolation of 4-alkoxycyclohexa-2,5-dienones 9, the tautomeric forms of the title phenols (10), is described. They are generated efficiently by the Ag ion mediated reaction of 4-bromocyclohexa-2,5-dienone **3b** with simple alcohols, although they can be irreversibly isomerized into **10** under the reaction conditions. Crude materials with high amounts of **9** can be obtained by conducting the reaction with AgClO₄ in the presence of Na₂CO₃ or with AgOCOCF₃ and by interrupting the reaction shortly after the formation of $\mathbf{9}$ is complete. The AgOCOCF₃ reaction produces labile 4-(trifluoroacetoxy)cyclohexa-2,5-dienone 11 also, the formation of which becomes significant as the alcohol becomes bulky. All of 9 prove to be very much susceptible to the prototropic rearrangement into 10 by catalysis with base, acid, or SiO₂. Crude dienones 9 can be conveniently prepared directly from phenol **6** by treatment for a short time with Br_2 in alcohols containing AgClO₄ and Na₂CO₃. A one-pot synthesis from **6** of 4-oxyfunctionalized 2,6-di-*tert*-butylphenols, including 10, is also described.

Cyclohexadienones 1a or 1b are the tautomeric forms of phenols 2a or 2b, respectively. In most cases, these species only exist transiently since they readily undergo prototropic rearrangement into more stable, phenol forms. Therefore, it is usual that they can not be isolated,

although they may be detectable by spectroscopic means under appropriate conditions.¹ 4-Halocyclohexa-2,5-dienones 3 and bis(cyclohexadienone)s 4 are among rare examples of dienones of type 1a which can be isolated. Dienones 3 and 4 are obtained by electrophilic phenol halogenation² and phenoxy radical coupling,³ respectively. Even these isolatable dienones are susceptible to irreversible isomerization into the corresponding phenols by catalysis with base, acid, or SiO₂. They also isomerize in polar media such as EtOH. 4-tert-Butyl-cyclohexa-2,5dienone 5 has been isolated from irradiation of an isomeric cyclohexa-2,5-dienone.⁴ It is noticeable that these isolatable dienones bear tert-butyl groups in the 2- and 6-positions. Simple dienones of type 1b do not appear to have been isolated.5

Isolation of simple dienones of type **1a** where X is an oxyfunctional group appears to be hitherto unknown, although their intermediacy has been or may be reasonably postulated to account for the formation of the products from a number of reactions such as (i) reactions of phenols with oxygen electrophiles,⁶ (ii) reactions of phenoxy radicals with oxygen radicals,⁷ and (iii) reactions of chemically or electrochemically generated phenoxenium ions or related species with oxygen nucleophiles.8 In this article, the generation and isolation of 4-alkoxy-2,6-di-tert-butylcyclohexa-2,5-dienones (9), the tautomeric forms of 4-alkoxy-2,6-di-tert-butylphenols (10), is described. Their generation was expected from 4-bromo-2,6-di-*tert*-butylcyclohexa-2,5-dienone (3b) by a reaction analogous to the Ag ion induced nucleophilic displace-

[®] Abstract published in Advance ACS Abstracts, September 15, 1996. (1) (a) Lasne, M.-C.; Ripoll, J.-L.; Denis, J.-M. Tetrahedron Lett. 1980, 21, 463. (b) Capponi, M.; Gut, I.; Wirz, J. Angew. Chem., Int. Ed. Engl. 1986, 25, 344

<sup>Ed. Engl. 1986, 25, 344.
(2) (a) Ershov, V. V.; Volod'kin, A. A.</sup> *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk* 1962, 730. (b) Volod'kin, A. A.; Ershov, V. V. *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk* 1962, 2022. (c) Fyfe, C. A.; Van Veen, L., Jr. *J. Am. Chem. Soc.* 1977, 99, 3366. (d) Pearson, D. E.; Venkataramu, S. D.; Childers, W. E., Jr. *Synth. Commun.* 1979, 9, 5. (e) Baciocchi, E.; Bocca, P. L. *Ric. Sci.* 1969, *39*, 68.
(3) (a) Kharasch, M. S.; Joshi, B. S. J. Org. Chem. 1957, 22, 1439.
(b) Ley, K.; Müller, E.; Mayer, R.; Scheffler, K. Chem Ber. 1958, 91, 2670. (c) Omura, K. J. Org. Chem. 1991, *56*, 921.
(4) Matsuura, T.; Ogura, K. J. Am. Chem. Soc. 1967, 89, 3846.

⁽⁵⁾ For specifically substituted phenols including hydroxy derivatives of polycondensed aromatic hydrocarbons, the tautomeric cyclohexadienone forms of type 1a or 1b are known, which are isolable in the individual state or exist in an appropriate solvent. Some of these dienone forms are energetically favored over the phenol forms, and in limited cases only the dienone forms are known. The actual cyclohexadienone-phenol tautomerism, as a mobile equilibrium, has been rarely observed experimentally. See: (a) Ershov, V. V.; Nikiforov, G. A. Russ. Chem. Rev. **1966**, *35*, 817. (b) Forsén, S.; Nilsson, M. In The Chemistry of the Carbonyl Group; Patai, S., Ed.; Wiley: New York, 1970; Vol. 2, p 157. (c) Crozier, R. F.; Hewitt, D. G. Aust. J. Chem. 1972, 25, 183. (d) Highet, R. J.; Chou, F. E. J. Am. Chem. Soc. **1977**, 99, 3538. (e) Teuber, H.-J.; Götz, N. Chem. Ber. **1956**, 89, 2654. (f) Teuber, H.-J.; Thaler, G. Chem. Ber. 1959, 92, 667

^{(6) (}a) Chambers, R. D.; Goggin, P.; Musgrave, W. K. R. J. Chem.
Soc. 1959, 1804. (b) McClure, J. D. J. Org. Chem. 1963, 28, 69.
(7) (a) Pfoertner, K.; Böse, D. Helv. Chim. Acta 1970, 53, 1553. (b)

^{(1) (}a) Pfoertner, K.; Bose, D. Helv. Chim. Acta 1970, 53, 1553. (b) van Dort, H. M.; Geursen, H. J. Recueil 1967, 86, 520. (c) Armstrong, D. R.; Breckenridge, R. J.; Cameron, C.; Nonhebel, D. C.; Pauson, P. L.; Perkins, P. G. Tetrahedron Lett. 1983, 24, 1071. (d) Ngo, M.; Larson, K. R.; Mendenhall, G. D. J. Org. Chem. 1986, 51, 5390.
(8) (a) Ronlán, A. J. Chem. Soc. D 1971, 1643. (b) Nilsson, A.; Palmquist, U.; Pettersson, T.; Ronlán, A. J. Chem. Soc., Perkin Trans. I 1978, 696. (c) Endo, Y.; Shudo, K. Yakugaku Zasshi 1994, 114, 565.
(d) Pelter, A.; Elgendy, S. M. A. J. Chem. Soc., Perkin Trans. I 1973, 1891. (e) Mckillon A.; Perry D. H.; Edwards, M. J. Org. Chem. 1976. 1891. (e) Mckillop, A.; Perry, D. H.; Edwards, M. J. Org. Chem. 1976, 41 282

 Table 1. Alkoxy Dienones 9 from Bromo Dienone 3b^a

				product (yield, ^b %)	
run	alcohol	Ag salt	additive	9	10
1	MeOH	AgClO ₄		9a (35)	10a (54)
2	MeOH	AgClO ₄	Na ₂ CO ₃	9a (71)	10a (15)
3	MeOH	AgClO ₄	H_2O^c	9a (54)	10a (24)
4	MeOH	AgOCOCF ₃		9a (82)	10a (6)
5	EtOH	AgClO ₄	Na ₂ CO ₃	9b (80)	10b (6)
6	<i>i</i> -PrOH	AgClO ₄	Na_2CO_3	9c (81)	10c (7)
7	t-BuOH ^{d}	AgClO ₄		9d (41)	10d (49)
8	t-BuOH ^{d}	AgClO ₄	Na ₂ CO ₃	9d (79)	10d (14)
9	t-BuOH ^{d}	AgOCOCF ₃		9d (30)	10d (1)
10	t-AmOH ^e	AgClO ₄		9e (74)	10e (16)
11	t-AmOH ^e	AgClO ₄	Na ₂ CO ₃	9e (88)	10e (3)

^{*a*} Unless stated otherwise, the reaction was carried out for 2 min at 0 °C by using **3b** (2 mmol), AgClO₄ or AgOCOCF₃ (2 mmol), and an alcohol (30 mL). The amount of Na₂CO₃ employed as an optional additive was 8 mmol. ^{*b*} ¹H NMR spectroscopically determined yields of **9** and **10** contained in the crude product. Compound **9** was converted into **10** when chromatographed on SiO₂. See Experimental Section for products obtained by chromatography. ^{*c*} Conducted for 10 min with a solvent mixture of MeOH (28 mL) and H₂O (4 mL). ^{*d*} Conducted at 27 °C. ^{*e*} Conducted for 4 min.

ment of 4-bromo-4-alkyl-2,6-di-*tert*-butylcyclohexa-2,5dienones with an alcohol.⁹

Results and Discussion

A solution of AgClO₄ (1 molar equiv) in MeOH was added in one portion to solid 3b, and the mixture was vigorously stirred for a few minutes at 0 °C. As 3b dissolved, yellow deposits of insoluble AgBr formed. The ¹H NMR spectrum (in CDCl₃) of the isolated organic product exhibited singlets ascribable to 4-methoxy-2,6di-tert-butylphenol (10a) and weak singlets assignable to 4-bromo-2,6-di-*tert*-butylphenol (7), while the starting material (3b) was undetectable. In addition, the spectrum displayed new signals, which appeared at δ 6.69 (d, J = 3.1 Hz), 4.42 (t, J = 3.1 Hz), 3.40 (s), and 1.24 (s) with relative intensities of ca. 2:1:3:18. Upon addition of pyridine- d_5 to the CDCl₃ solution, these new signals disappeared rapidly from the spectrum, and the singlets due to 10a were intensified. Column chromatography of the crude product on SiO₂ isolated **10a** and **7** in 89%and 5% yields, respectively, but did not afford the product responsible for the new NMR signals. The product, therefore, contained a labile new substance, and this appeared to be 4-methoxy-2,6-di-tert-butylcyclohexa-2,5dienone (9a), which underwent prototropic rearrangement into **10a** by catalysis with pyridine- d_5 or SiO₂. The NMR signals at δ 6.69, 4.42, 3.40, and 1.24 are assignable to vinyl, methine, methoxy, and tert-butyl protons, respectively. Combination of the analyses by ¹H NMR spectroscopy and chromatography suggested that the crude product contained 9a and 10a in 35% and 54% yields, respectively (Table 1, run 1).^{10,11} The result suggests that Ag ion mediated removal of the bromide ion from 3b to generate carbocationic intermediate 8 (a resonance form of the phenoxenium ion), which combines with solvent to give 9a, is so efficient that it overwhelms the competing prototropic rearrangement of 3b into 7 (Scheme 1). An ¹H NMR study confirmed that in the absence of AgClO₄ the prototropic rearrangement of **3b** in MeOH- d_4 was fast and was not accompanied by solvolysis of **3b**.¹² Solvolysis of 4-bromo-4-alkyl-2,6-di*tert*-butylcyclohexa-2,5-dienones with alcohols can take place in the absence¹³ or presence¹⁴ of base.

Enrichment of **9a** in the crude product was tried by modifying the reaction conditions. It was presumed that the isomerization of **9a** was facilitated not only by MeOH but also by HClO₄, which is likely generated during the course of the AgClO₄-induced reaction of **3b** with MeOH (cf. Scheme 1). Neutralization of the HClO₄ as it was generated was expected to retard the isomerization and thus to increase the content of **9a**. The reaction of **3b** with AgClO₄ in MeOH was conducted in the presence of excess Na₂CO₃ (4 molar equiv). The crude product obtained was analyzed in a manner analogous to that described above for the reaction without Na₂CO₃. As expected, the amount of **9a** in the crude product was remarkably increased (71%) while that of **10a** was substantially decreased (15%) (Table 1, run 2).

Enrichment in the content of **9a** could also be brought about by conducting the reaction of **3b** with $AgClO_4$ in a 7:1 (v/v) mixture of MeOH and H_2O (in the absence of Na₂CO₃). The reaction time was extended due to the limited solubility of **3b** in the medium, and **9a** constituted the major component (54% yield) (Table 1, run 3). The prototropic rearrangement of **3b** in a mixture of AcOH and H_2O (containing HBr) is slow as the proportion of H_2O becomes high.^{2c}

The reaction between **3b** and MeOH was investigated also with AgOCOCF₃ (in the absence of Na₂CO₃), which was expected to generate CF₃CO₂H, a much weaker acid than HClO₄. The oily product was estimated to contain **9a** in as high as 82% yield (Table 1, run 4). Attempted purification of crude **9a** thus obtained by crystallization from nonpolar solvents such as hexane proved unsuccessful: chilling the solution slowly deposited only a crystalline mixture of **9a** and **10a**, and the proportion of **9a** to **10a** in it was always lower than that in the original oil. The isomerization of **9a** into **10a** progressed, though gradually, even in the nonpolar solvents.

We turned our attention to preparation of 9 other than 9a by conducting similarly the reaction of 3b in other alcohols with AgClO₄ and Na₂CO₃ or with AgOCOCF₃. The reaction with AgClO₄ and Na₂CO₃ was carried out in EtOH, i-PrOH, or t-AmOH (tert-amyl alcohol) at 0 °C or in *t*-BuOH at 27 °C. As shown in Table 1 (runs 5, 6, 8, and 11), all of the products from these reactions contained 9 (see below for their NMR data) in satisfactory amounts (79-88%). The 9/10 (including 9a/10a) ratio obtained from the reaction at 0 °C tended to be high when the alcohol was bulky. Further examples of the decreased yield of 9 upon omission of Na₂CO₃ are also shown in the table (compare runs 7 and 10 with runs 8 and 11, respectively). The crude product of 4-ethoxy- (9b) or 4-isopropoxy-2,6-di-tert-butylcyclohexa-2,5-dienone (9c) obtained from run 5 or 6, respectively, was oily. Their purification by crystallization from hexane or CCl₄ has

⁽⁹⁾ Ronlán, A.; Parker, V. D. J. Chem. Soc. C 1971, 3214.

⁽¹⁰⁾ The isomerization of 9a into 10a upon chromatography on SiO₂ was assumed to be quantitative.

⁽¹¹⁾ Very recently, we have found that **9a** is contained, albeit in a small quantity, in the product obtained from the reaction of 2,6-ditert-butylphenol (6) with I_2 and H_2O_2 in MeOH. See: Omura, K. J. Org. Chem. **1996**, 61, 2006.

⁽¹²⁾ Dienone **3b** (43 mg) was allowed to dissolve in MeOH- d_4 (0.6 mL) in ca. 80 s at 30 °C, and the progress of its decay at ca. 30 °C was followed by ¹H NMR spectroscopy. After 3 min about one-half of the **3b** was found to survive, and after 25 min only singlets due to **7** were observed.

⁽¹³⁾ Coppinger, G. M.; Campbell, T. W. J. Am. Chem. Soc. 1953, 75, 734.

^{(14) (}a) Müller, E.; Ley, K.; Kiedaisch, W. *Chem. Ber.* **1954**, *87*, 1605.
(b) Tashiro, M.; Fukata, G.; Yoshiya, H. *Synthesis* **1979**, 988.

 Table 2.
 ¹H NMR Data for Alkoxy Dienones 9 in CDCl₃

	δ (multiplicity, J in hertz)				
compd	H-3 and H-5	H-4	2- and 6- <i>t</i> -Bu	4-alkoxy	
9a ^a	6.69 (d, 3.1)	4.42 (t, 3.1)	1.24 (s)	3.40 (s)	
9b ^a	6.70 (d, 3.2)	4.46 (t, 3.2)	1.24 (s)	3.61 (q, 7.0), 1.26 (t, 6.9)	
9 c ^{<i>a</i>}	6.65 (d, 3.1)	4.47 (t, 3.1)	1.23 (s)	3.83 (hept, 6.1), 1.25 (d, 6.1)	
$\mathbf{9d}^b$	6.52 (d, 3.1)	4.54 (t, 3.1)	1.22 (s)	1.34 (s)	
9e ^b	6.53 (d, 3.2)	4.55 (t, 3.1)	1.22 (s)	1.62 (q, 7.5), 1.27 (s), 0.97 (t, 7.4)	

^a Crude product obtained from run 4, 5, or 6, Table 1. ^b Analytically pure product obtained from run 8 or 11, Table 1.

been unsuccessful: at -20 °C, it progressed extremely reluctantly and slow isomerization of 9b or 9c into 4-ethoxy- (10b) or 4-isopropoxy-2,6-di-tert-butylphenol (10c), respectively, was observed. The crude product of 4-*tert*-butoxy-2,6-di-*tert*-butylcyclohexa-2,5-dienone (9d) obtained from run 8 was crystalline. We were pleased to find that pure 9d was readily isolated by simple recrystallization from hexane. Microanalysis of the compound, obtained as colorless crystals, suggested it to be isomeric with 4-tert-butoxy-2,6-di-tert-butylphenol (10d). Product identification by ¹H NMR spectroscopy was straightforward (Table 2). The ¹³C NMR spectrum was also compatible with structure 9d. The IR (1658 and 1639 cm⁻¹; Nujol mull) as well as UV [236 nm (log ϵ 3.92) in cyclohexane] spectra also supported the cyclohexa-2,5dienone structure.¹⁵ Purification by recrystallization of the crystalline crude product of 4-(tert-amyloxy)-2,6-ditert-butylcyclohexa-2,5-dienone (9e), obtained from run 11, was also facile. Structure 9e for the compound was unambiguously demonstrated similarly from the ¹H (Table 2) and ¹³C NMR, IR (1661 and 1639 cm⁻¹; Nujol mull), and UV [239 nm (log ϵ 3.95) in cyclohexane] spectra as well as microanalysis. Table 2 lists the ¹H NMR data of 9a-c also. It is rational that the resonances of vinyl, methine (in the 4-position), and tert-butyl (in the 2- and 6-positions) protons in **9a**-c appear in the

neighborhood of those in **9d** or **9e**. Stability was tested on the pure specimens of **9d** and **9e**. As proved by ¹H NMR spectroscopy, they were considerably stable in CDCl₃: **9d** or **9e** suffered little isomerization into **10d** or 4-(*tert*-amyloxy)-2,6-di-*tert*-butylphenol (**10e**), respectively, after allowing the solution to stand at ca. 35 °C for 15 h. In CDCl₃ containing pyridine- d_5 , they were converted into the phenols very rapidly, as anticipated. In MeOH- d_4 , they were unstable and their isomerization was completed within 15 min at ca. 35 °C. It was confirmed that **9d** and **9e** were quantitatively recovered as **10d** and **10e**, respectively, when chromatographed on SiO₂ with nonpolar eluents. In the solid states, both **9d** and **9e** remained unchanged for months when stored at -20 °C.

As cited above, a high amount of **9a** in the crude product was obtained from the reaction of **3b** with AgOCOCF₃ in MeOH. The reactions to give **9** with AgOCOCF₃ and other alcohols, however, proved not to be quite successful, owing to occurrence of a competing reaction generating a new, labile dienone, 4-(trifluoroacetoxy)-2,6-di-*tert*-butylcyclohexa-2,5-dienone (**11**). Compound **11** was not isolable, but its formation was supported by the following representative observations. The ¹H NMR spectrum (in CDCl₃) of the crude product from the reaction in *t*-BuOH (at 27 °C) (run 9, Table 1) suggested that it contained, in addition to **9d** and **10d**, two new compounds. One of them (minor component) was found to be 4-(trifluoroacetoxy)-2,6-di-*tert*-butylphenol (**12**). The other (major component) showed signals at δ 6.53 (d, J

⁽¹⁵⁾ The spectral properties of cyclohexadienones have been described in detail. See: (a) Rieker, A.; Rundel, W.; Kessler, H. *Z. Naturforsch* **1969**, *24b*, 547. (b) Rieker, A.; Berger, S. *Org. Magn. Reson.* **1972**, *4*, 857.

= 3.2 Hz) (overlapped with the doublet due to **9d**), 5.98 (t, J = 3.2 Hz), and 1.25 (s). In CDCl₃ containing pyridine- d_5 , the ¹H NMR spectrum of the product consisted exclusively of singlets due to **10d** and **12**. Column chromatography of the product on SiO₂ provided four compounds almost excusively, **10d**, **12**, 2,6-di-*tert*-butyl-hydroquinone (**13**), and 2,6-di-*tert*-butyl-*p*-benzoquinone (**14**). Compounds **13** and **14** were artifacts formed from **12** during the chromatography.¹⁶ It is thus reasonable

to assume that the crude product contained 11, to which the aforementioned new NMR signals are ascribable, and that 11 underwent prototropic rearrangement by base, acid, or SiO₂, providing 12. Similarly, the crude products obtained from the reactions (at 0 °C) of 3b with Ag-OCOCF₃ in other alcohols (including MeOH) contained 11 and 12 in addition to 9 and 10. The (9 + 10)/(11 + 10)12) molar ratios were estimated to be 30, 8.0, 2.6, 0.5, and 0.5 for the reactions in MeOH, EtOH, i-PrOH, t-BuOH, and t-AmOH, respectively: the 9/10 ratios and the 11/12 ratios were in general high. The formation of 11 may be the result of the reaction of carbocation 8, generated from the interaction between 3b and Ag-OCOCF₃, with the freed CF₃CO₂ anion (Scheme 1).¹⁷ Competition for 8 between CF_3CO_2 anion (giving 11) and an alcohol (giving 9) is shown to become in favor of the former as the alcohol becomes bulkv.¹⁸ Generation of 9 by displacement reaction of 11 with an alcohol is unlikely, since extending the time of the reaction in *t*-BuOH, described above, altered neither the total yield of 9d and 10d nor that of 11 and 12, although the 9d/10d and 11/ 12 ratios were both decreased.

It was found that **9** can be conveniently obtained directly from 2,6-di-*tert*-butylphenol (**6**), by brominating it to generate **3b** *in situ* in an alcohol containing AgClO₄ and Na₂CO₃ (cf. Scheme 1). Molecular bromine (1 molar equiv) in DME was added quickly to a vigorously stirred solution (0 °C) of **6** and AgClO₄ (2 molar equiv) in an alcohol¹⁹ containing excess Na₂CO₃ (4 molar equiv), and the stirring was continued for a few minutes at 0 °C. As shown in Table 3, the crude product contained **9** in a yield comparable to that obtained from the corresponding reaction of **3b** with AgClO₄ and Na₂CO₃. Success of the process is indebted to the rapidity and selectivity of both the bromination and the subsequent debromination. Half of the AgClO₄ employed was consumed in the bromination step.

It is natural that a one-pot synthesis of **10** from **6** was also possible. Quick addition of methanolic Br_2 (1 molar equiv) to a stirred solution of **6** and $AgClO_4$ (2 molar equiv) in MeOH (not containing Na_2CO_3) readily afforded

Table 3. Alkoxy Dienones 9 from Phenol 6^a

	product (yield, ^b %)		
alcohol	9	10	
MeOH	9a (75)	10a (14)	
EtOH	9b (86)	10b (7)	
<i>i</i> -PrOH	9c (83)	10c (6)	
t-BuOH ^c	9d (91)	10d (3)	
t-AmOH	9e (82)	10e (3)	

^{*a*} Unless stated otherwise, the reaction was carried out for 2 min at 0 °C by using **6** (2 mmol), Br₂ (2 mmol), AgClO₄ (4 mmol), and Na₂CO₃ (8 mmol) in a mixture of an alcohol (30 mL) and DME (7 mL). ^{*b*} ¹H NMR spectroscopically determined yields of **9** and **10** contained in the crude product. ^{*c*} Conducted for 3 min in a mixture of *t*-BuOH (20 mL) and DME (17 mL in total: see Experimental Section).

10a in 84% yield as well as AgBr (2 molar equiv).²⁰ The actual species for brominating $\mathbf{6}$ must be Br_2 itself. However, BrClO₄ (or BrOMe after its reaction with MeOH) generated from the reaction between Br₂ and AgClO₄ may as well be responsible for the bromination of 6. Indeed, addition of Br_2 to methanolic AgClO₄ (1 molar equiv) immediately discharged the Br₂ color and precipitated AgBr (1 molar equiv, isolated by filtration), and the filtrate was capable of brominating 6 rapidly. Hence **10a** was obtained also by adding **6** to a mixture of Br₂ (1 molar equiv) and AgClO₄ (2 molar equiv) in MeOH. Electrophilic halogenation of aromatic substrates with a combination of molecular halogen and Ag ion has been documented.²¹ The same methoxylation could be achieved by adding Br₂ to a solution of **6** and AgClO₄ in DME containing a limited amount (12 molar equiv) of MeOH, without much sacrifice to the yield of 10a (79%). 4-Alkoxyphenols 10b, 10c, and 10d were obtained in 76-79% yields from similar reactions with limited amounts (8-10 molar equiv) of EtOH, *i*-PrOH, and *t*-BuOH, respectively. The reaction with H_2O (28 molar equiv) provided 13 (79%). Acetoxylation of 6 to give 4-acetoxy-2,6-di-tert-butylphenol (15) was successful (78%) only when a large quantity of AcOH was employed. Examples of synthesis of oxyfunctionalized phenols directly from phenols are scarce because substantial overoxidation takes place usually.^{8b,d,e,22}

In summary, 4-alkoxycyclohexa-2,5-dienones **9**, the tautomeric forms of 4-alkoxyphenols **10**, can be obtained as crude products from the fast reaction of 4-bromocyclohexa-2,5-dienone **3b** either with AgClO₄ and Na₂CO₃ in alcohols or with AgOCOCF₃ in the same solvents. They can also be obtained directly from phenol **6** by treatment with Br₂ in alcohols containing AgClO₄ and Na₂CO₃. Crude 4-*tert*-alkoxycyclohexa-2,5-dienones **9d** and **9e** can be purified facilely by recrystallization, and they are fully

⁽¹⁶⁾ Compounds **13** and **14** were also obtained in small quantities from the reactions with $AgClO_4$ (see Experimental Section).

⁽¹⁷⁾ An alternative mechanism may not be excluded in which **3b** is attacked by Ag ion and by an alcohol or CF_3CO_2 anion concertedly and free cation **8** accordingly is not generated.

⁽¹⁸⁾ The reaction **b** accelerating, a net generative generation of a containing $\Lambda_2 CO_3$ in an equimolar mixture of MeOH and *t*-BuOH (not containing Na₂CO₃) gave rise to **10a** and **10d** in 76% and 14% yields, respectively, after chromatography of the crude product.

⁽¹⁹⁾ In the reaction with *t*-BuOH, DME was employed as a cosolvent to avoid freezing (see Experimental Section).

⁽²⁰⁾ If Br_2 was added slowly, namely, over a period of 6 min, the yield of **10a** was reduced to 56% while recovery of **6** (21%) and formation of **14** (14%) became significant. Compound **10a** was oxidized rapidly by Br_2 in MeOH containing or not containing AgClO₄, giving **14** quantitatively.

^{(21) (}a) Galli, C. J. Org. Chem. **1991**, 56, 3238. (b) Derbyshire, D. H.; Waters, W. A. J. Chem. Soc. **1950**, 3694. (c) Myhre, P. C.; Owen, G. S.; James, L. L. J. Am Chem. Soc. **1968**, 90, 2115. (d) Sy, W.-W. Synth: Commun. **1992**, 22, 3215.

⁽²²⁾ Becker, H.-D.; Gustafsson, K. J. Org. Chem. 1979, 44, 428.

characterized. Dienones 9 are susceptible to (irreversible) tautomerization into phenols 10 by catalysis with base, acid, or SiO₂. A one-pot synthesis of 4-oxyfunctionalized 2,6-di-tert-butylphenols from 6 is achieved.

Experimental Section

¹H (90 MHz) and ¹³C (22.6 MHz) NMR spectra were taken in CDCl₃. Column chromatography was conducted on Merck SiO₂ 60 by using gradient elution (100% petroleum ether to 50%/50% petroleum ether/benzene). TLC was run on SiO₂. GC analyses were performed at 150 °C on a column packed with 10% FAP-S on Chromosorb W. Commercially available Ag-ClO₄ (Wako) and AgOCOCF₃ (Aldrich) were used as received. Reactions with the Ag salts were carried out in a stoppered vial

Silver Ion Induced Reaction of Bromo Dienone 3b with Alcohols (Table 1). With AgClO₄ in the Presence of Na₂CO₃ (Runs 2, 5, 6, 8, and 11). To a mixture of powdered $3b^{2c}$ (570 mg, 2 mmol) and finely powdered anhydrous Na₂CO₃ (0.85 g, 8 mmol) was added at once a cold (0 °C) solution of AgClO₄ (415 mg, 2 mmol) in an alcohol (30 mL), and the resulting mixture was stirred magnetically for 2 min at 0 °C. The reaction with *t*-BuOH (run 8) was run at 27 °C. The reaction with *t*-AmOH (run 11) was carried out for 4 min. The mixture was filtered into a flask containing stirred, cold water (200 mL). The contents of the flask were extracted with petroleum ether (200 mL \times 2). The extract was washed with water, dried over anhydrous Na₂SO₄, and evaporated to dryness under reduced pressure below 30 °C. The residual product (containing alkoxy dienone 9 and 4-alkoxyphenol 10) was readily subjected to analysis by ¹H NMR spectroscopy. Column chromatography of the product provided successively 4-bromophenol 7 (15-33 mg, 3-6%), 10 (see below for the yield), p-benzoquinone 14 (3-24 mg, 1-5%), and hydroquinone 13 (none or trace). Compound 10d or 10e was in part obtained as a mixture with 14, and the amounts of 10d or 10e and of 14 in the mixture were estimated by ¹H NMR spectroscopy. Compounds 7, 10a-e, and 14 were purified by recrystallization from hexane or MeOH.

Compound 7: identical with an authentic sample^{3b} (¹H NMR and TLC); mp 82-84 °C (lit.^{3b} mp 80-82 °C).

Compound 10a: obtained from run 2 (407 mg, 86%); identical with a commercially available sample (from Aldrich) of 10a (1H NMR and TLC); mp 105-106 °C (lit.23 mp 106-107 °C).

Compound 10b: obtained from run 5 (432 mg, 86%); mp 84.5-85.5 °C (lit.²⁴ mp 83-84 °C).

Compound 10c: obtained from run 6 (463 mg, 88%); mp 60-62.5 °C (lit.²⁵ mp 59–60 °C).

Compound 10d: obtained from run 8 (515 mg, 93%); mp 99.5-100 °C (lit.²⁶ mp 99-100 °C).

Compound 10e obtained from run 11 (532 mg, 91%); colorless crystals from hexane; mp 64.5–65 °C; ¹H NMR δ 6.76 (s, 2H), 4.85 (s, 1H), 1.63 (q, J = 7.2 Hz, 2H), 1.41 (s, 18H), 1.21 (s, 6H), 1.00 (t, J = 7.2 Hz, 3H); IR (CHCl₃) 3620 cm⁻¹; UV (cyclohexane) 283 nm (log ϵ 3.40), 203 (4.47). Anal. Calcd for C₁₉H₃₂O₂: C, 78.03; H, 11.03. Found: C, 77.76; H, 11.19.

Compound 14: identical with an authentic sample²⁷ (¹H NMR and TLC); mp 65-67 °C (lit.²³ mp 67-68 °C).

With AgClO₄ in the Absence of Na₂CO₃ (Runs 1, 3, 7, and 10). The procedure described above for the reaction with AgClO₄ in the presence of Na_2CO_3 was followed except that Na₂CO₃ was omitted. The reaction in a mixture of MeOH (28 mL) and H₂O (4 mL) (run 3) was carried out for 10 min. Column chromatography of the product gave 7 (3-5%), 10 [10a (89%, run 1), 10a (78%, run 3), 10d (90%, run 7), or 10e (90%, run 10)], 13 [0-15 mg (3%)], and 14 (trace to 6%).

With AgOCOCF₃. The procedure described above for the reaction with AgClO₄ in the presence of Na₂CO₃ was followed except that AgOCOCF₃ (442 mg, 2 mmol) replaced AgClO₄ and Na₂ĈO₃ was omitted. MeOH (run 4), EtOĤ, *i*-PrOH, *t*-BuOH (run 9), or *t*-AmOH was employed as the alcohol. The reaction mixture obtained from run 9, containing fine particles of AgBr (passable through a filter paper) was poured into brine (200 mL) for the subsequent extractive workup. Column chromatography of the product obtained from run 4 afforded 7 (4%), **10a** (88%), **13** (1%), and **14** (2%). Column chromatography of the product obtained from run 9 provided successively 7 (2%), 4-(trifluoroacetoxy)phenol 12 (190 mg, 30%), a mixture of 10d (31%) and 14 (5%) as analyzed by ¹H NMR spectroscopy, and 13 (141 mg, 32%). Compounds 12 and 13 were purified by recrystallization from hexane.

Compound 12: colorless crystals; mp 46–47 °C; ¹H NMR δ 6.97 (s, 2H), 5.22 (s, 1H), 1.43 (s, 18H); IR (CHCl₃) 3620, 1790 cm⁻¹. Anal. Calcd for C₁₆H₂₁O₃F₃: C, 60.37; H, 6.65. Found: C, 60.55; H, 6.66. Ester 12 was also obtained in nearly quantitative yield by treating 13 with excess $(CF_3CO)_2O$ at rt. Ester 12 suffered significant degradation upon chromatography, giving 13 and 14.

Compound 13: identical with an authentic sample prepared by NaBH₄ reduction of 14 (¹H NMR and TLC); mp 105-106 °C (lit.²³ mp 110–111 °C). Hydroquinone **13** suffered partial degradation into 14 upon chromatography.

Isolation and Identification of tert-Alkoxy Dienones 9d and 9e. Analytically pure 9d and 9e were obtained by recrystallizing the crude products obtained from runs 8 and 11, Table 1, respectively.

Compound 9d: colorless crystals from hexane (227 mg, 41%); mp 107–109 °C; ¹³C NMR δ 185.9, 146.9, 139.7, 75.1, 64.6, 34.7, 29.3, 28.1. Anal. Calcd for C₁₈H₃₀O₂: C, 77.65; H, 10.86. Found: C, 77.40; H, 11.01.

Compound 9e: colorless crystals from hexane (267 mg, 46%); mp 84-86.5 °C; ¹³C NMR δ 186.0, 146.9, 139.8, 77.5, 64.3, 34.7, 33.6, 29.3, 25.4, 8.8. Anal. Calcd for C19H32O2: C, 78.03; H, 11.03. Found: C, 77.99; H, 10.99.

The ¹H NMR, IR, and UV spectra of **9d** and **9e** as well as their stability are described in the text.

One-Pot Synthesis of Crude Alkoxy Dienones 9 from Phenol 6 (Table 3). A cold (0 °C) solution of Br₂ (320 mg, 2 mmol) in DME (7 mL) was added in one portion to a vigorously stirred, cold, heterogeneous mixture of 6 (412 mg, 2 mmol), AgClO₄ (830 mg, 4 mmol), finely powdered anhydrous Na₂CO₃ (0.85 g, 8 mmol), and an alcohol (30 mL). The Br₂ color was discharged immediately. The stirring was continued for 2 min at 0 °C. The mixture was filtered into a flask containing stirred, cold water (200 mL). The reaction with t-BuOH was performed at 0 °C for 3 min by using the Br₂ solution in DME and a mixture of 6, AgClO₄, Na₂CO₃, t-BuOH (20 mL), and DME (10 mL), and the reaction mixture was filtered into a flask containing a stirred, cold solution of NaCl (25 g) in water (200 mL). The contents of the flask were extracted with petroleum ether (200 mL \times 2). The extract was washed with water, dried (Na₂SO₄), and evaporated to dryness under reduced pressure below 30 °C. The amount of 9 (as well as that of **10**) in the residual product was estimated readily by ¹H NMR spectroscopy.

Recrystallization from hexane of the products obtained from the reactions with t-BuOH and t-AmOH afforded spectroscopically (1H NMR) homogeneous 9d (220 mg, 40%) and 9e (295 mg, 51%), respectively.

One-Pot Synthesis of 4-Oxyfunctionalized 2,6-Di-tertbutylphenols from Phenol 6. 4-Methoxyphenol 10a. Run A. To a stirred, cold (0°C) solution of 6 (412 mg, 2 mmol) and AgClO₄ (830 mg, 4 mmol) in MeOH (30 mL) was added quickly a cold solution of Br₂ (320 mg, 2 mmol) in MeOH (7 mL). The Br₂ color was discharged immediately, and yellow precipitates began to form soon. The stirring was continued for 3 min at 0 °C. The mixture was filtered to give AgBr (0.73 g, 97%). The filtrate was poured into water (200 mL) and extracted with petroleum ether (200 mL \times 2). The extract was washed with water, dried (Na₂SO₄), and evaporated under

⁽²³⁾ Müller, E.; Ley, K. Chem. Ber. 1955, 88, 601.
(24) Cook, C. D.; Kuhn, D. A.; Fianu, P. J. Am. Chem. Soc. 1956, 78. 2002

 ⁽²⁵⁾ Plekhanova, L. G.; Nikiforov, G. A.; Ershov, V. V. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1969**, 961.
 (26) Cook, C. D.; Woodworth, R. C.; Fianu, P. *J. Am. Chem. Soc.*

^{1956, 78, 4159.}

⁽²⁷⁾ Omura, K. J. Org. Chem. 1989, 54, 1987.

Dienone Tautomers of 4-Alkoxy-2,6-di-tert-butylphenols

reduced pressure, leaving a crystalline residue. Recrystallization from MeOH provided **10a** (340 mg, 72%). The filtrate from the recrystallization was evaporated, and the residue was chromatographed to give successively a mixture of **6** (22 mg, 5% recovery) and **7** (5 mg, 1%) as analyzed by GC, an additional crop of **10a** (58 mg, 84% in total), and **14** (10 mg, 2%).²⁰

Run B. The reaction was conducted with a solution of **6** (2 mmol), AgClO₄ (4 mmol), and MeOH (1 mL, 25 mmol) in DME (15 mL) and a solution of Br_2 (2 mmol) in DME (7 mL), and the reaction mixture was worked up, in the manner described above for run A, giving **6** (5% recovery), **7** (5%), **10a** (79% in total), and **14** (8%).

Run C. To a stirred, cold solution of $AgClO_4$ (4 mmol) in MeOH (20 mL) was added a cold solution of Br_2 (2 mmol) in MeOH (7 mL). The Br_2 color was discharged immediately, and yellow precipitates began to form soon. After 1 min, a cold solution of **6** (2 mmol) in MeOH (10 mL) was added quickly to the stirred mixture. The stirring was continued for 5 min at 0 °C. The reaction mixture was worked up in the manner described above for run A, giving **6** (3% recovery), **7** (5%), **10a** (80% in total), and **14** (5%).

Run D. To a stirred, cold solution of $AgClO_4$ (2 mmol) in MeOH (25 mL) was added a cold solution of Br_2 (2 mmol) in MeOH (7 mL). After the stirring was continued for 30 s, the mixture was filtered into a flask containing a solution of **6** (2 mmol) in MeOH (5 mL). The filtration collected AgBr (98%). The contents of the flask were allowed to stand for 3 min at rt and poured into water. Extractive workup with petroleum ether provided a yellow oil (0.57 g), which was a 2.3:1 mixture of **3b** and **7** as estimated by ¹H NMR spectroscopy. A small amount of **6** (2% recovery) was also found.

Other 4-Oxyfunctionalized 2,6-Di-*tert*-butylphenols. The procedure described above for the synthesis of 10a, run B, was followed except that EtOH (1 mL, 17 mmol), *i*-PrOH (1.5 mL, 20 mmol), *t*-BuOH (1.5 mL, 16 mmol), or H₂O (1 mL, 56 mmol) replaced MeOH. Acetoxylation was conducted with a solution of **6** and AgClO₄ in a 3:1 (v/v) mixture of AcOH and DME (30 mL) and a solution of Br₂ in the same solvent mixture (7 mL). Recrystallization of the product from hexane provided **9b** (318 mg, 64%), **9c** (290 mg, 55%), **9d** (380 mg, 68%), **13** (302 mg, 68%), or 4-acetoxyphenol **15** (322 mg, 61%). Additional crops of the 4-oxyfunctionalized phenols were obtained by chromatography of the filtrates from the recrystallization, and their total yields amounted to 76–79%.

Compound **15**: mp 91–92 °C (lit.²⁸ mp 87–88 °C).

Acknowledgment. The author is thankful to Tohru Nakata and Makiko Terada (students) for experimental contributions.

Supporting Information Available: ¹H NMR spectra of compounds **9d,e**, **10a**–**e**, **12**, and products containing compounds **9a**–**c** and **11**; ¹³C NMR spectra of compounds **9d** and **9e** (14 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO9609945

⁽²⁸⁾ Müller, E.; Rieker, A.; Mayer, R.; Scheffler, K. Justus Liebigs Ann. Chem. 1961, 645, 36.